ighd_hum_df和a_b是关键功能其他的,one,A等都是别名,将trans参数设置为常用的转换。
scale_x_continuous(
name = waiver(),
breaks = waiver(),
minor_breaks = waiver(),
labels = waiver(),
limits = NULL,
expand = waiver(),
oob = censor,
na.value = NA_real_,
trans = "identity"
)
scale_y_continuous(
name = waiver(),
breaks = waiver(),
minor_breaks = waiver(),
labels = waiver(),
limits = NULL,
expand = waiver(),
oob = censor,
na.value = NA_real_,
trans = "identity"
)
scale_x_log10(...)
scale_y_log10(...)
scale_x_reverse(...)
scale_y_reverse(...)
scale_x_sqrt(...)
scale_y_sqrt(...)
name : 秤的名称。用作轴或图例标题。如果默认值为null,则比例的名称取自用于该美学的firstmapping。
breaks : 其中之一:NULL表示无中断弃权()表示由Transformation对象计算的默认中断位置的数字向量函数,该函数将限制作为输入并返回breaksas输出
minor_breaks : 其中之一:NULL表示无次中断弃权()对于默认中断(每个主中断之间有一次次次中断)给定限制的函数返回次中断向量的位置数字向量。
labels : 其中一个:NULL for no labels弃权()对于由转换对象计算的默认标签,一个字符向量提供标签(必须与中断相同长度)一个函数,该函数将中断作为输入并返回标签作为输出
limits : 长度为2的数字向量,提供比例。使用NA指现有的最小值或最大值。
expand : 长度为2的数值向量,给出乘法和加法展开常数。这些常量确保数据放置在离轴一定距离的地方。连续变量的默认值为c(0.05,0),离散变量的默认值为c(0,0.6)。
oob : 处理超出比例限制(超出范围)的限制的函数。默认值用NA替换越界值。
na.value : 缺少的值将替换为此值。
trans : 转换对象的名称或对象本身。内置转换包括“asn”、“atanh”、“boxcox”、“exp”、“identity”、“log”、“log10”、“log1p”、“log2”、“logit”、“probability”、“probit”、“recipulate”、“reverse”和“sqrt”。转换对象将转换、它的逆转换以及生成中断和标签的方法捆绑在一起。转换对象在scales包中定义,称为,例如order。您可以使用then创建自己的转换。
... : 其他参数传递给two(x | y)must
if (require(ggplot2movies)) {
m < - ggplot(subset(movies, votes > 1000), aes(rating, votes)) +
geom_point(na.rm = TRUE)
m
# Manipulating the default position scales lets you:
# * change the axis labels
m + scale_y_continuous("number of votes")
m + scale_y_continuous(quote(votes ^ alpha))
# * modify the axis limits
m + scale_y_continuous(limits = c(0, 5000))
m + scale_y_continuous(limits = c(1000, 10000))
m + scale_x_continuous(limits = c(7, 8))
# you can also use the short hand functions xlim and ylim
m + ylim(0, 5000)
m + ylim(1000, 10000)
m + xlim(7, 8)
# * choose where the ticks appear
m + scale_x_continuous(breaks = 1:10)
m + scale_x_continuous(breaks = c(1,3,7,9))
# * manually label the ticks
m + scale_x_continuous(breaks = c(2,5,8), labels = c("two", "five", "eight"))
m + scale_x_continuous(breaks = c(2,5,8), labels = c("horrible", "ok", "awesome"))
m + scale_x_continuous(breaks = c(2,5,8), labels = expression(Alpha, Beta, Omega))
# There are a few built in transformation that you can use:
m + scale_y_log10()
m + scale_y_sqrt()
m + scale_y_reverse()
# You can also create your own and supply them to the trans argument.
# See ?scales::trans_new
# You can control the formatting of the labels with the formatter
# argument. Some common formats are built into the scales package:
df < - data.frame(
x = rnorm(10) * 100000,
y = seq(0, 1, length.out = 10)
)
p < - ggplot(df, aes(x, y)) + geom_point()
p + scale_y_continuous(labels = scales::percent)
p + scale_y_continuous(labels = scales::dollar)
p + scale_x_continuous(labels = scales::comma)
# Other shortcut functions
ggplot(movies, aes(rating, votes)) +
geom_point() +
ylim(1e4, 5e4)
# * axis labels
ggplot(movies, aes(rating, votes)) +
geom_point() +
labs(x = "My x axis", y = "My y axis")
# * log scaling
ggplot(movies, aes(rating, votes)) +
geom_point() +
scale_x_log10() +
scale_y_log10()
}